Compilation of submissions and reports received in relation to alternative technologies and technology transfer as referred to in paragraph 4 of article 14

Note by the secretariat

As referred to in the note by the secretariat on the matter (UNEP/MC/COP.2/10), a compilation of submissions and reports from parties and other stakeholders on issues relating to existing initiatives and progress made in relation to alternative technologies; on the needs of parties, particularly developing-country parties, for alternative technologies; and on challenges experienced by parties, particularly developing-country parties, in technology transfer, is set out in the annex to the present note. The submissions and reports are reproduced as received, without formal editing.
Annex

Compilation of submissions and reports received in relation to alternative technologies and technology transfer as referred to in paragraph 4 of article 14

I. Information submitted by Japan

Information from Japan upon the Request from the Minamata Convention Secretariat on Capacity Building, technical assistance and technology transfer on the Minamata Convention on Mercury

June 2018

At the Diplomatic Conference of the Minamata Convention on Mercury, Japan expressed its intention to support developing countries and promote voices and messages from Minamata, through the actions titled “MOYAI Initiative.” As part of this initiative, the MINAS (MOYAI Initiative for Networking, Assessment and Strengthening) is being promoted. MINAS is a program of Ministry of the Environment, Japan that is designed to support developing countries’ efforts in mercury management by providing measures including the various activities with close cooperation and collaboration with relevant agencies.

1. Information relating to Paragraph 4 and 5, Article 14 of the Minamata Convention

The Paragraph 4, Article 14 the Minamata Convention stipulates that the information on alternative technologies and technology transfer shall be considered at COP2. The Paragraph 5 also stipulates that the COP shall make recommendations on how capacity-building, technical assistance and technology transfer could be further enhanced.

The first Conference of Parties of the Minamata Convention (COP1) held in September 2017 requested the secretariat to seek submissions and reports from Parties and other stakeholders on issues relating to existing initiatives and progress made in relation to alternative technologies, on the needs of parties, particularly developing-country parties, for alternative technologies and on challenges experienced by Parties, particularly developing-country Parties, in technology transfer, and to present the information received to the Conference of the Parties at its second meeting for consideration.

Japan, as an advanced country on mercury management, has developed many technologies and know-how. The information is compiled in a 2-pages flyer as
‘Mercury technology bulletin series’. 10 bulletins listed below are now available (Annexed to this document):

- 001: Mercury Free Technology in the Chlor-Alkali Industry
- 002: Collection of Mercury Waste discharged from Households
- 003: Recovery of Mercury from Fluorescent Lamps
- 004: Mercury Material Flow Analysis
- 005: Monitoring of Mercury in Hair Samples
- 006: Removal of Mercury from Flue Gas using Activated Carbon
- 007: Reduction of Atmospheric Mercury Emission through Improvement of Efficiency of Coal Combustion
- 008: Treatment of Mercury Sphygmomanometers
- 009: Stabilization and Solidification of Mercury
- 010: Monitoring of Mercury in Ambient Air

2. Information relating to the COP1 Decision MC-1/21

The COP1 recognized that some of the existing regional and subregional centres have been already developing projects and activities related with mercury to deliver capacity-building and technical assistance. It recognized capacity-building and technical assistance delivered by other multilateral and bilateral means as well, and through partnerships with private sector, which has been continuously contributing to various mercury-related activities.

Thus, the COP1 decided to collect information on the work undertaken by the existing regional, subregional and national arrangements in delivering capacity-building and technical assistance to assist parties in meeting their obligations under the Minamata Convention (MC-1/21: Capacity-building, technical assistance and technology transfer on the Minamata Convention on Mercury).

Minamata city and its surroundings in Japan is an area affected by the Minamata disease, thus, it was certificated as the Model Environment City concept in 1992. Since then, it lead Japan’s eco-friendly city policy with waste segregation, reuse/recycle, reforestation, environmental ‘Meister’ certificate, etc. Also, it accommodates many organizations and individuals involved in mercury-related
issues. The resources which the area possesses have now become a precious asset to promote the Minamata Convention.

International meetings on mercury that were convened in Minamata in recent years are listed in Table 1 and one-day symposia or celebratory events are listed in Table 2. Minamata city also regularly receives training or visiting programmes that include multiple activities such as lectures, exercises, field visits, etc. The trainings or visits undertaken in the past 12 months are listed in Table 3.

<table>
<thead>
<tr>
<th>Date</th>
<th>Name, Venue</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Venue: Umi-to-Yuyake</td>
<td>Participants: 33 (27 from overseas)</td>
</tr>
<tr>
<td>29 November - 1 December 2016</td>
<td>Asia-Pacific Expert Workshop on Continuous Atmospheric Mercury Monitoring</td>
<td>Countries: 6 (excl. Japan)</td>
</tr>
<tr>
<td></td>
<td>Venue: Minamata Environmental Academia</td>
<td>Participants: 29 (13 from overseas)</td>
</tr>
<tr>
<td>29 - 30 June 2017</td>
<td>Western Pacific Regional Workshop: Health Sector Involvement in Implementation of the Minamata Convention on Mercury</td>
<td>Countries: 18 (excl. Japan)</td>
</tr>
<tr>
<td></td>
<td>Venue: Minamata Environmental Academia</td>
<td>Participants: 43 (25 from overseas)</td>
</tr>
<tr>
<td>30 - 31 May 2018</td>
<td>Lessons Learned Workshop of the Minamata Initial Assessment Project in Asia</td>
<td>Countries: 6 (excl. Japan)</td>
</tr>
<tr>
<td></td>
<td>Venue: Minamata Environmental Academia</td>
<td>Participants: 14 (7 from overseas)</td>
</tr>
</tbody>
</table>
Table 2: Events/Symposia on Minamata Convention Convened in Minamata

<table>
<thead>
<tr>
<th>Date</th>
<th>Name, Venue</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 October 2013</td>
<td>Commemorative Opening; Diplomatic Conference on Minamata Convention of Mercury; Venue: Minamata City Cultural Hall</td>
<td>Countries: 139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Participants: approx. 600 (Simultaneous interpretation provided)</td>
</tr>
<tr>
<td>18 October 2014</td>
<td>1st Minamata Convention Forum; Venue: Minamata Disease Archives</td>
<td>Participants: approx. 200 (6 from overseas)</td>
</tr>
<tr>
<td>24 October 2015</td>
<td>2nd Anniversary of the Adoption of the Minamata Convention; Venue: Minamata Disease Archives</td>
<td>Participants: approx. 250</td>
</tr>
<tr>
<td>7 October 2016</td>
<td>3rd Anniversary of the Adoption of the Minamata Convention; Venue: Minamata Disease Archives</td>
<td>Participants: approx. 250</td>
</tr>
<tr>
<td>6 - 7 December 2016</td>
<td>NTMD Forum 2016; Venue: Minamata Disease Archives</td>
<td>Participants: approx 100 (8 from 4 countries)</td>
</tr>
<tr>
<td>1 July 2017</td>
<td>Celebrating Event for the Minamata Convention on Mercury; Venue: Minamata Disease Archives</td>
<td>Participants: 184 (35 from 28 countries) (Simultaneous interpretation provided)</td>
</tr>
<tr>
<td>21 December 2017</td>
<td>Reporting Event on Participation of Minamata COP1; Venue: Moyai Hall</td>
<td>Participants: approx. 250</td>
</tr>
</tbody>
</table>

Table 3: Training or Visit Programmes Undertaken in Minamata

<table>
<thead>
<tr>
<th>Date</th>
<th>Training/Visiting</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 20 October 2017</td>
<td>Capacity Strengthening for Multi-media Mercury Monitoring</td>
<td>10 from 10 countries</td>
</tr>
<tr>
<td>30 October - 3 November 2017</td>
<td>Capacity Building for Ratification and Implementation of the Minamata Convention on Mercury</td>
<td>9 from 7 countries</td>
</tr>
<tr>
<td>11 - 12 December 2017</td>
<td>Group Training Programme for Capacity Development for Addressing Mercury Pollution from ASGM in Indonesia</td>
<td>8 from 1 country</td>
</tr>
<tr>
<td>Date</td>
<td>Training/Visiting</td>
<td>Participants</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>23 - 25 January 2018</td>
<td>International Seminar on Minamata Disease</td>
<td>9 from 7 countries</td>
</tr>
<tr>
<td>1 - 2 March 2018</td>
<td>Visit to Japan’s Laboratories by Laboratory Analysts in Charge of Mercury Monitoring</td>
<td>8 from 5 countries</td>
</tr>
</tbody>
</table>

In Minamata, regular activities by many organizations can provide various opportunities to the participants/visitors under organized programmes. Organizers can coordinate with relevant facilities/individuals for suitable arrangements that fit to the purposes of the programmes.

One of the local organizers include Minamata Environmental Academia (Academia) that is owned by Minamata Municipal Government. The Academia is a central facility to develop and disseminate information not only on the environmental management technologies, environmental policies or government response, but also local know-hows through collaborative works by utilizing local resources. It provides a pivotal role to establish connections/ties among various stakeholders to promote Minamata.

The activities are classified by types and listed in the Table 4.

Table 4: Regular Activities in Minamata

<table>
<thead>
<tr>
<th>Facility/Resource</th>
<th>Key Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>National Institute for Minamata Disease (NIMD)</td>
<td>Research on Minamata disease in various fields, International collaborative researches, Supports to laboratories in developing countries</td>
</tr>
<tr>
<td>Various research laboratories in nearby universities, International Mercury Laboratory Inc.</td>
<td>Environmental impacts and human impacts of mercury, Social impacts of environmental pollutions</td>
</tr>
<tr>
<td>Technical development</td>
<td></td>
</tr>
<tr>
<td>NIMD</td>
<td>Rehabilitation for Minamata disease patients</td>
</tr>
<tr>
<td>International Mercury Laboratory Inc.</td>
<td>Simple and efficient mercury analysis methods</td>
</tr>
<tr>
<td>Educational activities</td>
<td></td>
</tr>
<tr>
<td>Facility/Resource</td>
<td>Key Activity</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Minamata Environmental Academia</td>
<td>Organizing public seminars, Organizing training programmes for developing countries</td>
</tr>
<tr>
<td>Kumamoto Prefecture Environmental Center</td>
<td>Educational programmes such as segregation of waste mercury-added products</td>
</tr>
<tr>
<td>Minamata High School</td>
<td>Volunteer guide at Minamata Disease Municipal Museum, Study programmes on mercury problems in developing countries</td>
</tr>
<tr>
<td>Kanshiranui Planning</td>
<td>Organizing environmental study tours for domestic and foreign high school students</td>
</tr>
</tbody>
</table>

Medical services

<table>
<thead>
<tr>
<th>Facility/Resource</th>
<th>Key Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meisuien</td>
<td>Care services, medical services for inpatients</td>
</tr>
<tr>
<td>Kyoritsu Clinic</td>
<td>Medical services for patients</td>
</tr>
</tbody>
</table>

Public awareness

<table>
<thead>
<tr>
<th>Facility/Resource</th>
<th>Key Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minamata Disease Municipal Museum</td>
<td>Collection, archiving, displaying information on Minamata diseases, Organizing a Minamata disease storyteller group</td>
</tr>
<tr>
<td>Minamata Disease Archives</td>
<td>Displaying scientific information on mercury</td>
</tr>
<tr>
<td>Soshisha</td>
<td>Collection and archiving of information on Minamata disease, Operating a private museum, Displaying archived materials</td>
</tr>
<tr>
<td>Toomi-no-ie, Hotto Hausu, Orange Hall</td>
<td>Supporting Minamata disease patients (care services, vocational supports, etc.), Supporting story-telling activities by patients at various international and domestic fora</td>
</tr>
</tbody>
</table>

Administrative services

<table>
<thead>
<tr>
<th>Facility/Resource</th>
<th>Key Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Policy Planning/Department of Welfare and Environment, Minamata City</td>
<td>Social care services to Minamata disease patients, ‘Moyai-naoshi’ reconciliation activities, Promoting Model Environment City, Solid waste management (segregation, collection, disposal)</td>
</tr>
<tr>
<td>Orange Hall, Moyai Hall, Minamata City Cultural Hall</td>
<td>Providing space and venue for various activities organized by local citizens</td>
</tr>
</tbody>
</table>

Private businesses
<table>
<thead>
<tr>
<th>Facility/Resource</th>
<th>Key Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Businesses in Eco-town industrial zone</td>
<td>Promotion of environment-oriented businesses such as solid waste management, Reduction of mercury-added products, Renewable energy, Cleaner production, etc.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Conservation of terraced paddy, Traditional handicrafts, Organic farming, Cultural heritages, Eco-friendly accommodation, Local specialties and tourism attraction</td>
</tr>
</tbody>
</table>

The facilities available in Minamata enable organizers to plan various types of activities. There are a couple of facilities that can provide venues for international conferences equipped with simultaneous interpretation booth. The largest theatre in Minamata can accommodate up to 800 specturals which is equipped with professional audio and visual equipment. Training and workshop venues are also available in a few facilities. The size of each training will depend on the nature of the training. Table 5 summarizes indicative capacities of the facilities available in Minamata.

Table 5: Indicative Capacities of Meeting Facilities in Minamata

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Capacity</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Conference</td>
<td>80 participants</td>
<td>Moyai Hall, Minamata Disease Archives, Minamata City Community Center</td>
</tr>
<tr>
<td></td>
<td>30 participants</td>
<td>Minamata Environmental Academia</td>
</tr>
<tr>
<td>Symposium / Lecture</td>
<td>800 participants</td>
<td>Minamata City Cultural Hall</td>
</tr>
<tr>
<td></td>
<td>200 participants</td>
<td>Moyai Hall, Minamata Disease Archives, Minamata City Community Center</td>
</tr>
<tr>
<td></td>
<td>80 participants</td>
<td>Minamata Environmental Academia, Orange Hall</td>
</tr>
<tr>
<td>Training</td>
<td>50 participants</td>
<td>Minamata Environmental Academia, Kumamoto Prefecture Environmental Center</td>
</tr>
</tbody>
</table>

Note: Numbers of facilities possess many small meeting rooms or tatami-mat rooms. Some tatami-mat rooms are available for stay-in trainings (Soshisha)
Mercury Technology Bulletin Series:

Mercury Free Technology in the Chlor-Alkali Industry

Background

Mercury Use in the Chlor Alkali Industry
The mercury-cell process has been widely used for the production of chlorine and caustic soda. Concerns about the environmental impact of using mercury have led to a reduction in the number of mercury-cell. However, the process itself is still widely used in many countries.

Requirement of the Minamata Convention on Mercury (Article 5 and Annex B)
Article 5 of the Minamata Convention regulates manufacturing processes using mercury or mercury compounds. It is stated that the mercury use for Chlor-alkali production shall be phased-out by 2025.

Overview of the Technology

Types of processes used in the Chlor-Alkali Industry
Caustic soda (sodium hydroxide) and chlorine are predominantly manufactured by the electrolysis of sodium chloride solution (Brine). Conventionally, mercury process and diaphragm process were used for the electrolysis process. Using ion exchange membrane process provides a lot of economic and environmental advantages and hence the conventional processes are being replaced by the ion exchange membrane process.

Mercury process, as the name suggests, utilizes mercury in the production process and is being phased out due to environmental challenges associated with the use of mercury. **Diaphragm process** utilizes diaphragm consisting of asbestos to separate the anode and cathode. The design of the ion exchange membrane process is similar to diaphragm cell except that a cation permeable membrane acts as an ion exchanger and divides the cell into two sections. Only sodium ions and a little water pass through the membrane. Chlorine is collected at the anode. The consumption of electricity in this method is the lowest of the three processes. This method is more efficient than the diaphragm method and newly constructed plants exclusively use this method.

Trend to mercury free technology in Japan
During the rapid economic growth period in the 1970s, the mercury-cell process was most common in the chlor-alkali industry, and the amount of mercury used in this process accounted for more than half of the total amount of mercury used in Japan. In Japan, as a result of effort made by the industry, all mercury cell processes were converted to mercury free process by 1986. Since 1999, ion-exchange membrane process is the only process used in the chlor-alkali facilities of Japan.

Source: Euro Chlor (http://www.eurochlor.org)
Mercury Technology Bulletin Series:
Advantages/Strengths

Co-Benefits from Conversion

When the Japanese industry started to use the ion-exchange membrane, they encountered issues of high energy cost and poor quality of caustic soda. However, extensive R&D has led to the improvement of electric current efficiency to 96% or more. The total energy consumption is lower by more than 30% compared to the diaphragm or mercury-cell processes, while yielding a better quality (higher purity) product.

Energy efficiency comparison

Conversion to ion-exchange membrane ensures the following "CO-BENEFITS": the reduction of energy consumption and the elimination of hazardous chemicals (e.g., mercury, asbestos) in the system. Furthermore, membranes manufactured in Japan have a high durability (long lifetime) thus ensuring stable operation of the system; these are factors essential for profitable operations of the chlor-alkali industry.

Applicability

World wide Use

Japanese ion-exchange membranes are used in salt electrolysis plants in over 50 countries all over the world.

Challenges to Technology Adoption

Although ion-exchange membrane processes are more energy conserving and profitable than mercury-cells in the long run, the initial investment cost for the process conversion is high. Therefore, it takes many years for the initial cost to be recovered from the revenue of the converted facility.

The excess mercury recovered from decommissioned mercury cell must be disposed of in environmental sound manner. As the waste management is not profit-producing component, the overall conversion process must incorporate the waste management within the feasibility study.

Further Reading

Detailed information about this technology can be found in the following website:
- Lessons from Minamata Disease and Mercury Management in Japan [https://www.env.go.jp/chemi/tmms/pr-m/mat01/en_full.pdf]

Published in: June, 2018
Edited and published by: Office of Mercury Management
Environmental Health Department
Ministry of the Environment, Japan
1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan
Tel: +81-(0)-3-5521-8260, E-Mail: suigen@env.go.jp
Collection of Mercury Waste discharged from Households

Background

Requirement of the Minamata Convention on Mercury

Under Article 11 of the Minamata Convention on Mercury, each Party is required to take appropriate measures so that mercury waste is managed in an environmentally sound manner.

The Convention identifies three categories of mercury wastes:
1. wastes consisting of mercury or mercury compounds,
2. wastes containing mercury or mercury compounds and
3. wastes contaminated with mercury or mercury compounds.

Environmentally Sound Management (ESM) of waste mercury products (e.g., waste fluorescent lamps and batteries) is a common challenge for all developing countries, since mercury and its compounds are used in various products for our daily lives. Developing mechanisms for source separation and collection of mercury waste discharged from households is essential for the implementation of the Convention.

Overview of the Technology

Due to increasing social concern about mercury since the outbreak of Minamata Disease, Japan has formulated and incrementally developed a collection system for waste mercury-added products generated from households.

In Japan, the local governments are responsible for collecting mercury waste generated from households. The system comprises of utilizing the existing collection system, including door-to-door collection and curbside collection, suited to the characteristics of the locality. Collection boxes are placed at various points where consumers visit frequently; for example at consumer-electronics retailer shops for waste fluorescent lamps/batteries and pharmacies for used thermometers, ensuring that an efficient collection system is in place.

Companies licensed by the local municipalities are contracted to recycle and dispose of mercury waste discharged from households that is collected by the municipality, in an environmentally sound manner.

Example of Collection System of Waste Fluorescent Lamps disposed from Households in Japan

Source: UNEP "Practical Sourcebook on Mercury Waste Storage and Disposal"
Mercury Technology Bulletin Series:
Advantages/Strengths

Measures to prevent breakage during disposal and transportation
Waste mercury-added products such as thermometers or fluorescent lamps are fragile and there is a possibility of mercury spilling and scattering, resulting in the pollution to the environment. Furthermore, the appropriate treatment methods vary according to different types of products and it is essential to take appropriate measures to ensure that mercury waste is not mixed with other waste.

The specific measures in practice include using containers suited to the shape, size and quantity of the waste to ensure the prevention of breakage, which improves the waste collection rate as well as pollution prevention.

Awareness raising among local governments and citizens
For segregation and collection of municipal waste to be carried out effectively, it is crucial that the stakeholders cooperate and have a clear and common understanding of pertinent issues. In Japan, an effective collection system has been established through institution building while simultaneously raising awareness of stakeholders.

The MOEJ has developed guidelines with examples of the actual cases and good practices of mercury waste collection by municipality along with other awareness raising pamphlets. Additionally, seminars for local governments are also organized occasionally.

Applicability
Japan has developed one of the most effective waste segregation and collection systems of mercury waste in the world. This has been possible due to the cooperation and understanding of the public.

Establishing such system will be challenging, but the Japanese approach can be a good reference and the know-hows can be applied to the establishment of similar approach in other countries. Furthermore, the Japanese experience of policy formulation, carrying out awareness raising activities, and carrying out the collection system by local governments can provide valuable information for establishing segregation and collection systems for mercury wastes in other countries.

Further Reading
MOEJ, Collection Methods of Waste Mercury-added Products discharged from Households (English DVD)

Published in: June, 2018
Edited and published by: Office of Mercury Management
Environmental Health Department
Ministry of the Environment, Japan
1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan
Tel: +81-(0)-3-5521-8260, E-Mail: suigin@env.go.jp
Article 11 of the Minamata Convention on Mercury requires each Party to take appropriate measures so that mercury waste is managed in an environmentally sound manner. Mercury contained in waste products such as fluorescent lamps and batteries need to be recovered to the extent possible, in order to prevent contamination of the environment from improper handling of these products. However, mercury is an element, and unlike other organic pollutants cannot be treated easily with conventional treatment measures.

Overview of the Technology

This technology involves the recovery of mercury from fluorescent lamps. This involves the separation of the components (glass, fluorescent powder, aluminum, etc.) followed by a process to increase the purity of the mercury. Although this general process is the same across all companies, the exact process may slightly differ according to the process adopted by each company.

The process employed by the largest recycler of fluorescent lamps in Japan is described below. In this plant, fluorescent lamps brought into the facility are pre-treated in a crusher and sorting facility where the glass, cap and fluorescent powder are separated. Aluminum is recovered while the glass is washed, and mercury is separated along with other fine particles. The resulting mercury sludge is passed onto a multiple hearth furnace (Herreshoff furnace), and is treated at a temperature of 600-800 degrees Celsius where the mercury is vaporized. The mercury vapor then passes through a condenser, where it is cooled and returns to liquid mercury. The collected mercury is refined and recovered as ‘high purity’ mercury.

Mercury Technology Bulletin Series:

Advantages/Strengths

High recovery rate of mercury
The recovery rate of mercury is quite high, meaning that very little mercury contained in the fluorescent lamps is discarded into the environment. Furthermore, the mercury recovered is of high purity, and this is recycled through means allowed by the Minamata Convention.

Recycling of components
In addition to mercury, this process allows for the recovery of other materials like aluminum and glass. The collected aluminum is also recycled whereas the remaining fluorescent powder after mercury extraction is used as a raw material for rare earth elements. Collected glass can be recycled to make raw materials for fluorescent lamps, glass wool, etc. These processes ensure that the fluorescent lamp is treated in an Environmentally Sound Manner as required by the Minamata Convention.

Safety
Although the most of the process is automated, the workers carrying out some manual works use gloves and masks to prevent their exposure to any fugitive mercury; hence the process is considered very safe.

Applicability

No restriction on shape or size
Fluorescent lamps of any shapes or sizes, including Circular lamps, linear lamps, ball shaped lamps, CFLs, CCFLs, can all be treated using this method (some manual work is required to remove the coatings for lamps with anti-shattering coatings).

Proven Track record
This treatment method of fluorescent lamps is currently successfully being practiced in Japan. Furthermore, fluorescent lamps have been brought from other countries into Japan, through the procedures required by the Basel Convention, for the purpose of treatment and recovery of mercury. This arrangement has helped ensure an environmentally sound treatment of fluorescent lamps generated overseas, which otherwise may not have been possible. Japanese recycling companies have installed lamp crushers in the partner countries to reduce transportation cost by volume reduction, subsequently supporting to promote the recycling of fluorescent lamps in the partner country.

Further Reading

UNEP, Practical Sourcebook on Mercury Waste Storage and Disposal

Published in: June, 2018
Edited and published by: Office of Mercury Management
Ministry of the Environment, Japan

Photo provided by Nomura Kohsan Co., Ltd

Japanese lamp crusher installed in the Philippines

Photo provided by Nomura Kohsan Co., Ltd

Resource provided by the Ministry of the Environment, Japan
Mercury Technology Bulletin Series:

Mercury Material Flow Analysis

Background

Requirement of the Minamata Convention on Mercury

Baseline information of mercury use and its emission and release is essential for national policy-making, and for identifying the mercury emission hotspots in the respective countries. Under the Convention, Parties have several obligations relevant to inventory development and reporting. The information obtained through reporting is used for evaluating the effectiveness of the Convention.

Article 8 (Emissions) and Article 9 (Releases)
Parties shall establish and maintain thereafter, an inventory of emissions/release from relevant sources.

Article 19 (Research, Development and Monitoring)
Parties shall endeavor to cooperate and develop/improve inventories including information of the use, consumption, and anthropogenic emissions into the atmosphere, and releases to the water and land of mercury and mercury compounds.

Article 21 (Reporting)
Parties shall include the information as called for in Articles 3, 5, 7, 8 and 9 of this Convention in its reporting.

Article 22 (Effectiveness Evaluation)
The Conference of the Parties (COP) shall evaluate the effectiveness of this Convention. Evaluation shall be conducted on the basis of available information, including those obtained from: (a) reports and other monitoring information provided to the COP; and (b) reports submitted pursuant to Article 21.

Overview of the Technology

Japan has developed and upgraded the "Mercury Material Flow (MMF)", which contains comprehensive information on the flow of mercury in Japan through its life cycle, since 2007.

<table>
<thead>
<tr>
<th>Year</th>
<th>Relevant activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Development of the 2005-base MMF</td>
</tr>
<tr>
<td>2009</td>
<td>Active discussions and studies of the MMF initiated</td>
</tr>
<tr>
<td>2011</td>
<td>Update of the 2005-base MMF to 2010-base MMF</td>
</tr>
<tr>
<td>2017</td>
<td>Development of the 2014-base MMF</td>
</tr>
</tbody>
</table>

![The Mercury Material Flow in Japan (2014)](image)

*No operation in Japan
Mercury Technology Bulletin Series:

Advantages/Strengths

Database Supporting the Policy Making and Reporting Process

Many countries are in the process of preparing a national mercury emission inventory as part of the "Minamata Initial Assessment (MIA)", using the "Toolkit for identification and quantification of mercury releases" developed by UNEP. This is an effective tool for countries at the initial stage of developing a preliminary inventory.

Japan’s MMF, however, also covers other aspects not covered by the UNEP Toolkit, and visually presents the life-cycle flow of mercury in the country by integrating relevant information. Moreover, the MMF provides more accurate estimate of mercury flow compared to the Toolkit since it is based on actual country-specific information. The method used for developing MMF assists policy makers to obtain a clear and accurate understanding of the overall picture of the mercury flow and to identify the key sectors and mercury emission hotspots where mercury management must be improved on a priority basis.

Furthermore, the MMF also assists the competent authorities in fulfilling their reporting obligations since it contains all the information required to report to the COP, pursuant to Article 21 para 2 of the Convention. If updated and upgraded periodically, the MMF could also be used to examine the impact and effectiveness of domestic policy measures.

Applicability

Potential to develop MMF in your country

Mercury inventory to be developed using UNEP Toolkit is a good initial step for countries to understand their current situation of mercury emissions. Japan is able to share its expertise to develop a more comprehensive MMF after this initial step, if there is need from the partner countries.

Japanese experts have shared their know-how and experiences in developing MMF at a series of workshops organized by MOEJ in ten partner countries. The next step would be the consultation with the stakeholders to obtain useful information such as the monitoring data and reports published by international organizations for the partner countries.

The lack of information/data is a common challenge for developing countries. Japan’s support to developing countries in searching appropriate methodologies to collect or develop data/information will provide the most relevant basis on the circumstances of each country.

Further Reading

MOEJ, Outcomes of Mercury Material Flows Analysis (Japanese only)

[http://www.env.go.jp/chemi/tmms/materialflow.html]

June, 2018
Office of Mercury Management
Environmental Health Department
Ministry of the Environment, Japan
1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan
Tel: +81-(0)-3-5521-8260, E-Mail: suigen@env.go.jp
Monitoring of Mercury in Hair Samples

Background

People engaged in activities using mercury or consuming food containing mercury such as fish are ‘exposed’ to mercury. Thus it is essential to monitor the level of human exposure and develop appropriate strategies to address the resulting health impacts. Article 19 of the Minamata Convention also calls on the parties to cooperate and develop and improve monitoring of mercury and its compounds, particularly in vulnerable populations and environmental biota.

Japanese experience of the Minamata disease in the 1950s, caused by ingestion of methylmercury via contaminated fish, resulted in various groundbreaking research on mercury. Hence, Japan now possesses various technologies related to mercury identification, management and risk reduction.

Overview of the Technology

Analysis of Mercury in human bio samples like scalp hair are useful methods for evaluating the level of human exposure and burden to the human body from mercury exposure. Hair is the most suitable media for estimating methylmercury exposure of humans.

However, the mercury concentration in hair can increase as a result of adhesion of external mercury vapor and inorganic mercury. In cases of no exposure to external inorganic mercury or mercury vapor, almost all mercury in hair is in the form of methylmercury; therefore, the level of methylmercury exposure from diet can be evaluated by measuring total mercury. However, since people involved in gold mining and gold refining have a high risk of contamination from metallic mercury and mercury vapor, evaluation of actual methylmercury exposure is possible only by measuring methylmercury as well as total mercury in hair.

The National Institute for Minamata disease (NIMD), under the Ministry of the Environment, Japan (MOEI), has carried out multiple researches to develop analytical methods for mercury, and published a “Mercury Analysis Manual”. Analytical methods for measuring total mercury in hair samples is described below. Conventional methods for measuring total mercury include absorption spectrometry (dithizone colorimetry), neutron activation analysis, X-ray fluorescent spectrometry and cold vapor atomic absorption spectrometry (CVAAS). CVAAS is superior to other methods in terms of sensitivity, convenience, and cost-effectiveness. CVAAS is classified into reduction/aeration procedure and sample combustion procedure according to the generation mode for mercury in the elemental form. The former involves wet digestion with a mixture of strong acids following my addition of a reducing agent to generate mercury in the elemental form, whereas the latter involves elemental vapor generation through direct combustion of the sample.

Analysis method for hair samples using wet digestion, reduction and CVAAS offers substantial improvements over the conventional method and has been explained in detail in the “Mercury Analysis Manual”.

In Japan, data obtained from biomonitoring (including scalp hair samples), is used for implementing various policy measures, aimed at protecting human health. For example, the report: “Advice for Pregnant Women on Fish Consumption and Mercury” has been prepared by the Ministry of Health, Labor and Welfare, which provides a guide on the types and amounts of fish that can be safely consumed.
Mercury Technology Bulletin Series:
Advantages/Strengths

Ease of sampling
Mercury analysis through hair samples is simple, and it is a non-invasive sampling method where samples are also easy to preserve. Since the hair grows at a rate of roughly 1 cm per month, evaluation of past exposure is also possible.

Decent tool for policy making and concrete action
For people concerned about their mercury exposure, providing their hair sampling results can be useful to help decision makers formulate policies, and take concrete actions to protect the population from mercury exposure.

Data accuracy
Methods developed by Japan using CVAAS for the analysis of total mercury is a highly sensitive method and offers substantial improvements over the conventional methods, hence providing much more accurate data.

Applicability
Sampling and analysis of hair samples can be done easily and accurately, by following the mercury analysis manual prepared by NIMD.

Further Reading
National Institute for Minamata Disease – Japan (NIMD)
(http://www.nimd.go.jp/english/index.html)
Advice for Pregnant Women on Fish Consumption and Mercury (2005)
(http://www.mhlw.go.jp/topics/bukyou/ryaku/ryaku-anzen/sshigen/zi05/051102-1en.pdf)
*this version has been updated in 2010 – Updated Japanese version is available at
(http://www.mhlw.go.jp/topics/bukyou/ryaku/ryaku-anzen/sshigen/dl/index-a.pdf)
MOEJ, Mercury Analysis Manual

Published in: Edited and published by:
June, 2018
Office of Mercury Management
Environmental Health Department
Ministry of the Environment, Japan
1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan
Tel: +81-(0)-3-5521-8260, E-Mail: sulgin@env.go.jp
Mercury Technology Bulletin Series:

Removal of Mercury from Flue Gas using Activated Carbon

Background

Control of emission of mercury and its compounds to the atmosphere from various industrial sources is essential in decreasing the total emission of mercury. Article 8 of the Minamata Convention requires for the control and reduction of mercury and its compounds to the atmosphere through measures to control emission from point sources falling within the source categories listed in Annex D of the convention (coal-fired Power Plants, Coal-fired Industrial Boilers, Smelting and roasting processes used in the production of non-ferrous metals, Waste Incineration facilities and Cement Clinker production facilities). For countries that are in a phase of transition to industrialized economy, increase in the number of facilities specified in Annex D of the Minamata Convention can be expected. In order to prevent and alleviate atmospheric pollution from these facilities, application of BAT is deemed to be essential.

Overview of the Technology

Facilities with combustion processes like incinicators, boilers, cement kilns etc. are typically equipped with a combination of various flue gas treatment devices like desulfurization devices, Fabric Filters (FF), Dry or Wet Scrubbers, Flue gas Desulfurization (FGD) units etc.

Although these devices are effective in reducing the emission of mercury to a certain extent, they are designed for the treatment of NOx, SOx, PM etc. and not specifically for the removal of mercury from flue gases.

In Japan, after the bitter experience with Minamata disease, an increase in public awareness to mercury has resulted in the development of various products that utilize activated carbon and now it is deemed to be a proven and effective technique for controlling the emission of mercury from flue gas. Due to their high degree of microporosity, activated carbons have a large surface area and hence mercury present in the flue gas is adsorbed into the activated carbon, thus preventing its emission. Activated carbon can either be installed in the form of pellets in an activated carbon tower, or through the injection of activated carbon into the flue gas (activated carbon sorbent injection). In Japan, various types of gas treatment devices that utilize activated carbon are used in incineration plants to control mercury emissions.

Photos provided by Ajinomoto Fine-Techno Co., Inc.

Mercury removal from a typical incineration plant using Granular activated carbon

Mercury removal from a typical incineration plant using Powder activated carbon

Source: Ajinomoto Fine-Techno Co., Inc.
Mercury Technology Bulletin Series:

Advantages/Strengths

Effective Removal of Mercury
Activated Carbon is very effective in the removal of mercury and although factors like temperature, inlet mercury concentration impact the performance, the removal efficiency of mercury can reach to over 90%. Using Activated Carbon, in conjunction with other flue gas treatment methods, can further improve mercury removal efficiency.

Products with Enhanced Performance
Activated Carbon products that provide enhanced performance compared to traditionally used ones have been developed. These products have a comparatively higher adsorption potential (up to 1000 times) ensuring that the flue gas treatment device can be smaller in size. As these products last longer, they do not need to be replaced as often. This helps in reduction of the amount of waste generated, contributing to the reduction of the total operation cost of the flue gas treatment devices. These products also provide improved stability at higher temperatures.

Mercury Removal Efficiency of Activated Carbon Injection in incinerators of municipal solid waste (MSW)

Source: Japan Environmental Facilities Manufacturers Association

Activated Carbon products with enhanced performance

Photo provided by Ajinomoto Fine-Techno Co., Inc.

Applicability

Mercury control needs to be considered as part of a comprehensive pollution control measure that includes other pollutants. From the viewpoint of mercury removal, activated carbon is considered to be one of the most effective methods for the removal of mercury and is being successfully used in facilities like incinerators to control emission of mercury from flue gas.
Activated Carbon products come in various forms like granular (crushed type/pellet type), powders which have been engineered into various forms like towers or sorbent powders. Depending upon the requirement, the appropriate product can be chosen and applied.

Further Reading

MOEJ, Technologies for the treatment of flue gas from incinerators (Japanese only)
(https://www.env.go.jp/council/07air-noisa/v079-03/mats02_7.pdf)

Published in: June, 2018
Edited and published by: Office of Mercury Management
Ministry of the Environment, Japan
1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan
Tel: +81-(0)-3-5521-8260, E-Mail: suigin@env.go.jp
Mercury Technology Bulletin Series:

Reduction of Atmospheric Mercury Emission through Improvement of Efficiency of Coal Combustion

Background

In some cold countries, combustion of coal for heating purpose is a common practice. This results not only in the emission of CO₂ from households and buildings that contributes to global warming, but also increase in the emission of other pollutants, including mercury contained in coals, causing an aggravation of atmospheric pollution during cold months.

Although this particular source of mercury emission is not listed in Annex D of the Minamata Convention and therefore is out of the scope of Article 8, it is nevertheless an important issue that has been identified as a priority by some countries and requires action to alleviate air pollution and hence protect human health and the environment. This document introduces a technology, as exemplified with a project in Mongolia, that can be utilized for the reduction of atmospheric emissions of conventional air pollutants through improvement of efficiency of coal combustion.

Overview of the Technology

In some countries with cold climate, a large amount of coal is used for the purpose of heating during winter time. In addition, in urban areas many apartment complexes and school buildings use HOBs (Heat Only Boilers) for heating purpose as well. These HOBs tend to be old and rudimentary with an inferior combustion efficiency which can lead to serious problems of atmospheric pollution resulting in restriction of visibility even during day time.

In addition to the mass consumption of coal, inefficiency of coal combustion by existing HOBs also contributes to the deterioration of air quality.

Overview of the Upgrade of HOB

Existing Heat-Only-Boilers (HOBs) can be upgraded to obtain a stable combustion, to reduce coal consumption and emission of air pollutants, to improve thermal efficiency and to reduce HOB dust. The improvement includes the upgrading of Cyclone (improvement of flow dust collection), upgrading of Air Preheater (replacement of heat exchange tube) and improvement of Forced Draft Fan and Induced Draft Fan (air flow adjustment, using corrosion protection material). The upgrading of HOBs in Mongolia has resulted in the reduction of coal consumption amount with the co-benefit of reduction in the emission of NOₓ, SOₓ, CO₂ and dust.
Mercury Technology Bulletin Series:

Advantages/Strengths

Co-benefit of reduction of pollutants

A major advantage is that the prevention of emission of a variety of air pollutants can be achieved along with decrease in the emission of CO₂, while simultaneously benefiting from the increase in the amount of power generated due to efficiency improvement. In this example, the following reductions were achieved:

- Coal consumption: Reduction of 10-30 %
- NOₓ, SO₂ Exhaust: Reduction of 8-20 %
- CO (Carbon monoxide) Exhaust: Reduction of 30-60 %
- Dust Exhaust: Reduction of 50-80 %

Reduction of coal consumption and dust exhaust also leads to the reduction of emission of heavy metals (Hg, Se, etc.).

Co-benefit of improvement to operation and maintenance

Improvement of boiler also results in the improvement of the safety of the workers through improvement in the work procedures, improvement of indoor air quality in the boiler room (through reduction of soot, fire overflow) and improvement in safety.

Before modifications

After modifications

Applicability

Over 1,000 HOBs are in operation in Mongolia. The improvement of coal combustion efficiency using Japanese boiler technology contributes to co-benefit of pollution control, reduction of mercury emission and decrease of coal consumption. This technology can also be applied to other partner countries.

Depending on the requirement and availability of funding sources, the improvements can be carried out incrementally in multiple stages. Further, Japanese technology can be utilized for manufacturing of required components locally, hence making it possible to keep the cost down.

Further Reading

- MOEJ, JCM Project in Mongolia (Japanese only) (https://www.env.go.jp/press/102839.html)
- Carbon market express, Project Details (https://www.carbon-markets.go.jp/ja/column/en_energy_efficiency/1760/)

Published in: June, 2018
Edited and published by: Office of Mercury Management
Environmental Health Department
Ministry of the Environment, Japan
1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan
Tel: +81-(0)-3-5521-8260, E-Mail: suigin@env.go.jp
Treatment of Mercury Sphygmomanometers

Background

Requirement of the Minamata Convention on Mercury

Article 4 of the Minamata Convention requires the phase out of mercury added product including sphygmomanometers containing mercury by 2020. Mercury contained in these devices needs to be recovered to the extent possible, in order to prevent contamination of the environment from improper handling of these products. However, mercury is a chemical element, and unlike other organic pollutants, cannot be treated easily with conventional treatment measures. Furthermore, Article 11 of the Convention requires each Party to take appropriate measures so that mercury waste is managed in an environmentally sound manner. Sphygmomanometers contain about 50 grams of mercury. Hence, mercury should be extracted from these devices and treated/disposed in an environmentally sound manner.

Overview of the Technology

Sphygmomanometers are manually dismantled under fumé hood which are setup inside an enclosed dismantling facility. The dismantling facility is closed off from other areas to prevent accidental leaking of mercury vapor to other areas. Mercury vapor generated in the fume hood or the facility is processed through the exhaust air treatment process using activated carbon. Mercury is collected in an iron bottle attached to the bottom of the fume hood. Workers are required to wear hard hats, masks, goggles and work clothing and gloves. Parts that come in contact with mercury are dismantled separately from those that do not. All the parts are collected separately according to the composition of the material. Dismantling of the mercury tank itself is carried out inside a fume hood. Iron and aluminum are recycled whereas glass and other materials are treated further by roasting (600°C to 800°C) where mercury is vaporized and collected.

Photo provided by Nomura Kohsan Co., Ltd.
Mercury Technology Bulletin Series:

Advantages/Strengths

High recovery rate of mercury
A combination of manual dismantling and roasting ensures that the recovery rate of mercury is very high. On average, about 50g of mercury is recovered from one sphygmomanometer.

Safe and environmentally friendly method
Combination of fumed hood and sound care during dismantling ensures that no leakage of mercury occurs. Any material that comes in contact with mercury is sent for roasting whereby the mercury is vaporized and collected. Workers use safety gears while dismantling ensuring that the process is safe and environmentally friendly.

Recycling of components
One advantage of manual segregation is that in addition to recovery of mercury, other components of the devices like iron, aluminum, etc. can be separated and recycled.

Applicability

In many countries, phase out of mercury containing medical measuring devices is being promoted through their health ministries. However, there is a lack of institutional framework to treat these devices once they become waste.

Hence, these devices end up being stored in containers inside interim storage facilities located within the hospital premises until an adequate treatment/disposal method becomes available. Japan has a lot of experience and knows how on safe methods of handling of mercury containing medical measuring devices without breakage. Further, Japan also has established a scheme to collect thermometers and sphygmomanometers from households and hospitals which can be of reference to other countries.

Further Reading

UNIDO, Nomura Kohsan’s mercury waste management technology
[http://www.unido.or.jp/en/technology_db/1716/]

MOEJ, Guidelines for Separation and Collection of Mercury Containing Waste discharged from Households (Japanese only)
Stabilization and Solidification of Mercury

Background

The Minamata Convention on Mercury has placed various restrictions on usage, import, and export, and transboundary movement of mercury. The demand for mercury is expected to decrease in the future as the usage of mercury will only be allowed for certain uses specified in the Convention. Article 11 of the Minamata Convention calls for each Party to take appropriate measures to manage mercury waste in an environmentally sound manner. Hence, mercury that has become surplus will become waste and will require environmentally sound management (ESM). Furthermore, the Minamata Convention requires the phase out of Chlor-Alkali production facilities using mercury by 2025 and a lot of excess mercury is expected to be generated as a result. The paragraph 5 (b) of the Article 3 of the Convention specifically requires the environmentally sound disposal of excess mercury from the decommissioning of chlor-alkali facilities. Hence it is expected that the ESM of waste elemental mercury will become a very important issue and a common challenge for many Parties in the future.

Overview of the Technology

Technology includes the process of stabilization using sulfur and subsequent solidification of the stabilized product.

Stabilization of elemental mercury is carried out by mixing mercury with pure sulfur (purity >99.9%) and treatment in a specialized equipment. The end product is Mercury Sulfide (HgS). The stabilized mercury can also be treated through a solidification process if required by national regulations. This involves the mixing of the treated HgS with sulfur and special additive in a fixed ratio in a controlled environment of a specialized device. The end product is solidified HgS that can be safely disposed in a landfill or in an underground mine (Dissolution test <= 0.005 mg/L, Headspace method < 0.001 mg/m³, Compressive strength >= 0.98 Mpa).

Overview of Stabilization and Solidification process

Source: Nomura Kohsan Co., Ltd
Mercury Technology Bulletin Series:

Advantages/Strengths

Environmentally Sound Treatment

Majority of mercury in nature exists in the form of mercury sulfide (HgS) and hence this form of mercury is very stable with very little risk of volatilization and elution of mercury. Dissolution tests conducted on Mercury Sulfide produced using this method have shown mercury concentrations to be less than 0.005mg/L.

![Black Mercury Sulfide after stabilization](photo.png)

Photo provided by Nomura Kohsan Co., Ltd

Reliable method for Stabilization

Other methods of stabilization like Vapor-Phase synthesis method require sophisticated equipment and have a risk of leakage/release of mercury. Mechano-chemical method controls physical reaction of mercury and sulfur and does not use any chemical. It results in a low risk of leakage/release of mercury as mercury is not vaporized.

![Solidified Sulfur Polymer](photo.png)

Photo provided by Nomura Kohsan Co., Ltd

Improved method of Solidification

Using sulfur for solidification produces a product that is of higher density, higher strength, higher salinity tolerance and higher acid resistivity than using traditional method of concrete solidification.

![Stabilization and Solidification plant](photo.png)

Photo provided by Nomura Kohsan Co., Ltd

![Final storage in controlled landfills](photo.png)

Source: Nomura Kohsan Co., Ltd

Applicability

The requirement of the degree to which excess mercury needs to be treated depends on the legal requirement as described in the standards or guidelines developed in each country. Countries that do not yet have legal stipulations need to develop guidelines, taking into account the country’s existing environmental and safety laws and regulations.

The legal requirement will determine whether stabilization of mercury alone is sufficient, or whether a further step of solidification may be required after stabilization. Package units for stabilization of waste mercury that can be installed and used onsite is now under development. Export of these mobile units from Japan are planned which can then be set up in the countries where ESM of the waste mercury presents significant challenges.

Further Reading

Nomura Kohsan Co., Ltd, Development of Stabilization and Solidification Technology

[Link to Further Reading](http://nkek.jp/research/stabilization-solidification-processes/)

Published in: June, 2018

Edited and published by: Office of Mercury Management, Environmental Health Department, Ministry of the Environment, Japan

1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan

Tel: +81-(0)-3-5521-8260, E-Mail: suigin@env.go.jp

Monitoring of Mercury in Ambient Air

Background

Mercury is emitted to the atmosphere from both natural and anthropogenic sources. In order to make the necessary policy decisions and develop specific strategies for the reduction of anthropogenic emission of mercury from various sources, the information on the level of mercury in the ambient air is necessary. Article 19 of the Minamata Convention also calls on the Parties to endeavor to cooperate with each other and to develop and improve the monitoring of levels of mercury and its compounds.

Japan has developed a reliable method for the measurement of mercury in the ambient air and published it as a part of the “Manual of Measurement Method of Hazardous Air Pollutants”. This manual will be a useful tool for countries to prepare a monitoring system for atmospheric mercury.

Overview of the Technology

The measurement method for mercury in the ambient air, as described in the “Manual of Measurement Method of Hazardous Air Pollutants” comprises of Gold Amalgamation Trap, Thermal Desorption and Cold Vapor Atomic Absorption Spectrometry.

Mercury in the ambient air is collected at a constant flow rate by using a collection tube (inner diameter 4mm) filled with mercury trap particles (80 mg of particles capped on both sides with quartz wool). The particles are composed of diatomaceous earth particles (thermostable earth particles of 500 – 600 μm in diameter) with gold bake-coated on their surfaces.

Overview of mercury sampling device

Generally, the flow rate of air sample collection is 0.5-1 ml per minute and sample is collected for 24 hours for ambient monitoring. As the flow rate is not very high, the collection of air sample can be done by a small pump. The necessary electrical power is also small.

During sampling, the surfaces of the particles may adsorb interfering gas other than mercury vapor that could compromise the measured values of mercury. The collected air sample tube is sealed and sent to the laboratory for measurement. On measurement of the CVAAS (Cold Vapor Atomic Absorption Spectrometry), in order to eliminate the influence of interfering gas, the collection tube is connected to a thermal desorption device whereby the generated mercury vapor is re-trapped by a refining collection tube. Then desorbed atomic mercury from secondary collection tube is led to the absorption detector cell of the atomic absorption spectrometer to determine the quantity of mercury by measuring the atomic absorption at a wavelength of 253.7nm. Measuring instruments specific to this type of collection tube are commercially available, but generic Atomic Absorption Spectrometer can be used for measurement by setting up the device to introduce mercury into the spectrometer from heater or pump.

Thermal Desorption Device

Source: Manual of measurement method of hazardous air pollutants
Mercury Technology Bulletin Series:

Advantages/Strengths

Data accuracy
This method of measuring the concentration of mercury in the ambient air using Gold Amalgamation Trap, Thermal Desorption and Cold Vapor Atomic Absorption Spectrometry is the official method for atmospheric mercury monitoring in Japan. It is a proven method commonly used in Japan and is widely considered to provide accurate and reliable data. If the clearly defined procedures for measurement are followed, very little difference in measured value, irrespective of which entity is carrying out the measurement, is observed. This ensures comparability of various different data sets obtained through measurement using this technique.

Decent tool for policy making and concrete action
Measurement of ambient air concentration of mercury can be a useful tool to help decision makers to formulate policies, and take concrete actions to protect the population from mercury exposure. The method can be used for formulation of monitoring system by policy makers. As the device used for sample collection is small and inexpensive, this method can be applied for the monitoring of local mercury usage and emission.

Applicability

With this method, analysis and collection of gaseous elemental mercury in the ambient air is possible. Measurement accuracy and sampling efficiency of the other chemical forms of mercury is partly uncertain. However, as the majority of mercury in ambient air exists as gaseous elemental form, the measured value determined by this method is considered as measured value for mercury concentration in the ambient air.

In order to ensure the reliability of the measured value, it is necessary to implement a strict measurement quality control. The Japanese government, through Japan International Cooperation Agency (JICA), has started a training programme since 2017 entitled “Capacity strengthening for multi-media mercury monitoring (4M)” aimed at laboratory technicians from developing countries on monitoring of mercury. The goal of this program is to enhance the capacity of analytical techniques and laboratory management necessary for more functional mercury monitoring.

Further Reading

Published in: June, 2018

Edited and published by: Office of Mercury Management, Environmental Health Department, Ministry of the Environment, Japan
1-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8975, Japan
Tel: +81-(0)-3-5521-8260, E-Mail: suigin@env.go.jp
2. Information submitted by Nigeria

CAPACITY BUILDING, TECHNICAL ASSISTANCE AND TECHNOLOGY TRANSFER

1. Capacity building programmes and Technical assistance in the following areas:

i. Establishment of a sustainable system for the collection, monitoring and interpreting data on mercury use, trade, emissions, releases and disposal.

ii. Customs and regulatory officials on the control of illegal import of mercury containing products into the country.

iii. Dental professionals and students in the use of mercury free dental restoration techniques and materials/Best management practices at dental clinics in the use of dental amalgam.

iv. Establishment of an environmentally sound system for the collection and interim storage facility for mercury-containing waste products.

v. Technical officers on mercury management, accessing financial opportunities for Sound Management of Chemicals and negotiation techniques to enhance their ability to implement and meet the country’s obligations under the Convention.

vi. Institutionalization of safer mining programmes.

vii. Upgrading of identified laboratories for specialized chemical analysis including mercury.

viii. Study tours to mercury management facilities that meet the convention’s requirements.

2. Technology transfer and Technical assistance are required in these areas:

a. BAT and BET for retrofitting of existing industries (point source of mercury) lacking the appropriate mercury pollution abatement technology.

b. Mercury free gold processing techniques for Artisanal Small Scale Gold miners.

c. Environmentally sound disposal of mercury and other hazardous waste.
3. Information submitted by the United States of America

In response to the request from the Committee of the Whole, the United States offers the following information related to capacity building and technical assistance as referred to in paragraph 4 and paragraph 5 of article 14 of the Minamata Convention.

The following are examples of capacity-building and technical Assistance Activities supported by the United States through funding or in-kind assistance. These U.S. supported activities have reduced the use of mercury in artisanal small-scale gold mining and other mining, including through introduction of mercury-free processing techniques; identified methods and technologies to reduce mercury emissions from coal combustion and store mercury safely; and provide individuals with tools to reduce their mercury exposure. The U.S. Department of State (DOS) Mercury Program website and the U.S. Environmental Protection Agency (EPA) International Cooperation website have brief project summaries. Additional information can be obtained by contacting Jane Dennison at DennisonJE@state.gov or Rodges Ankrah at ankrah.rodges@epa.gov.

Examples of Capacity-building and Technical Assistance Activities

Mercury emissions

- Reducing Mercury Emissions from the Coal Combustion Sector
 - DOS funded two International Energy Agency Clean Coal Center workshops to discuss methods and technology that countries could use to reduce mercury emissions from the coal combustion sector, one in India and one in South Africa.

- Measurement of Mercury and Black Carbon Emissions
 - DOS funded Arcadis, Inc. to build the capacity of Vietnam’s government through training on analytical equipment to measure mercury emissions from the coal combustion sector.

- Mercury Emissions Measurement Toolkit
 - EPA developed a toolkit housing a complete portable package of sampling and analytical equipment to measure emissions from coal combustion sources such as power plants and cement manufacturing; successful testing in joint UNEP-EPA measurement efforts has occurred in South Africa, China and Russia.

- Mercury Emissions Control Demonstration at Russian Coal-Fired Power Plant
 - EPA, Russian Institutes, UNEP, and Sweden demonstrated that sorbents made from activated carbon removed up to 90 percent of mercury emissions at a Russian coal-fired power plant with particulate emission collectors.

- Information Exchange on Mercury Emission Sources
 - EPA provided information on mercury air pollution control and measurement to China related to metals smelting, cement production, and coal-fired power plants and industrial boilers.
Mercury Management

- Developing of National and Regional Approaches to Environmentally Sound Management of Mercury in Southeast Asia
 - DOS funded Ban Toxics and BaliFokus preliminary mercury intervention frameworks in Indonesia and the Philippines.

- Mercury Management, Storage, Stabilization and Disposal Action Planning in Peru

- Developing Local Institutional Capacity to Collect, Manage and Store Mercury in Colombia
 - EPA is working with UNEP and the Colombian Cleaner Production Center (CNPML) to develop local capacities in ASGM and gold shop communities to manage and store excess mercury from ASGM mines and gold shops in Colombia. This is coordinated with local, regional and national government entities.

Artisanal small-scale gold mining (ASGM)

- Reducing ASGM Gold Shop Mercury Air Emissions and Human Exposure
 - EPA and the U.S. Department of Energy developed a system to capture mercury vapor emitted from amalgam burning in gold shops with 80% efficiency. Two systems were installed in Peru and Brazil. EPA provides technical assistance to Peru ASGM communities on issues related to burning amalgam.

- Developing Mercury Inventories in Artisanal and Small-scale Gold Mining in Southeast Asia
 - DOS funded a BaliFokus study on mercury inventories and trade in the ASGM sector in South East Asian countries involving Indonesia, Philippines, Vietnam, Singapore, Malaysia and several mercury-exporting countries.

- Reducing Mercury Use and Release in Artisanal and Small-Scale Gold Mining in Francophone West Africa
 - DOS supported the Artisanal Gold Council’s work setting up three mercury-free processing plants that demonstrated a much higher recovery of gold than when miners were using mercury.

- Legal and Policy Approaches to Address Environmental and Health Impacts of Artisanal Gold Mining in Nigeria
 - DOS funded the Environmental Law Institute assessment of legal and policy challenges underpinning the informal artisanal and small-scale gold mining sector in Nigeria.
- Training and Educational Projects under the UNEP Partnership on Artisanal and Small-scale Gold Mining
 - DOS supported Natural Resources Defense Council mercury guide to help people reduce their exposures.

- Development and implementation of artisanal and small-scale gold miner training resources for reducing mercury use and release in South America
 - DOS supported the development of two training videos on mercury-free alternative processing techniques that can be introduced to ASGM operations.

- Environmental Enforcement and Mercury Detection in ASGM in Colombia
 - EPA and the US Department of Justice have provided training to Colombian law enforcement and environmental officials on mercury air and soil detection/measurement equipment at ASGM sites.

- Prevention and Control of Gold Mining in Colombia and Peru
 - USAID, DOS and EPA are cooperating with Colombia and Peru to support formalization of the ASGM sector by developing transparent gold supply chains, improving working conditions and increasing control over the use, supply, management, storage and final disposition of mercury.

Collaboration to Achieve Policy Goals

- Information Exchange on Mercury
 - EPA facilitated the exchanged information on U.S. and Chinese policies for elemental mercury and mercury products relevant to the Minamata Convention through a bilateral workshop.

- UN Global Mercury Partnership (GMP)
 - The United States encourages participation in the UNEP’s Global Mercury Partnership, in which the EPA plays an active leadership role, as a resource to Parties for advancing the management of mercury issues.
4. Information submitted by the International POPs Elimination Network (IPEN)

IPEN combined submission to the Minamata Convention secretariat on;

- mercury emissions resulting from the open burning of waste.
- capacity-building and technical assistance and technology transfer,

Lee Bell
Mercury Policy Officer
IPEN
leebell@ipen.org

Mercury emissions from the open burning of waste.

In many developing countries (and in some developed countries) the practice of open burning of waste is practiced for a range of reasons including;

- volume reduction in the absence of a waste management/collection system;
- sanitation in the absence of a waste management/collection system;
- recovery of valuable metals from some waste streams (such as e-waste);
- mixed waste is too contaminated to recycle
- spontaneous or deliberately lit landfill fires.

This submission comments on the potential for capacity building and technology transfer to dramatically reduce the prevalence of open burning and the mercury emissions that result from it. Technology and capacity building should be extended beyond a narrow mercury focus to establish programmes that establish basic waste collection and separation systems that have an emphasis on separating organic and hazardous waste (highlighting mercury waste streams) from the recyclable waste stream. Synergies with funding, capacity building and technology transfer mechanisms of other chemical conventions should be explored as open burning is also a significant contributor of UPOPs such as PCDD/DF (Wiedinmyer et al 2014) and could be addressed in joint waste management projects based around collection and source separation to allow for recycling and treatment of discreet waste streams. Without basic source separation and collection systems mercury waste will continue to be a major contributor to anthropogenic mercury emissions from open burning.

Mercury can be liberated as vapor phase and particulate bound emissions from open burning waste fires leading to air, soil and water contamination as well as human health impacts. Waste containing mercury such as e-waste, medical waste and consumer products (CFLs, cosmetics, switches, thermometers) contribute to these emissions. It has been estimated that open burning of waste may contribute up to 10% of current anthropogenic emissions of mercury (Wiedinmyer et al 2014). A significant amount of open burning is situated in South Asia, south east Asia, Latin America and to a lesser extent, Africa (see fig 1). Open waste burning is also conducted in Pacific Islands.
A key response to open burning of waste which is leading to mercury emissions is the need to implement decentralised, economical waste management systems that maximise reuse and recycling of materials, separate hazardous materials for recycling or disposal and which directs organic wastes to value added processes while creating local employment opportunities.

Capacity building programmes for developing countries and countries with EIT to develop basic waste management systems based on collection and separation of material types is essential. Aid programmes often prioritise the construction of landfills and waste incinerators which sit at the bottom of the waste management hierarchy and are the least sustainable waste management and resource recovery options. They lead to ongoing groundwater contamination, UPOPs release and destruction of resources. Waste incineration is often proposed as a ‘solution’ to landfill and even as a better alternative to open burning as incineration allegedly takes place in ‘controlled conditions’. However, the production of thousands of tonnes of toxic ash from incinerators requires additional landfill so the landfill problem is not in any sense ‘solved’. Mercury waste management experts also contend that waste incineration is not appropriate for mercury contaminated or containing wastes as the risk of release of mercury vapors is high (Merly and Hube, 2014).

Fortunately, mercury waste is amenable to recovery despite its hazardous nature. If capacity building programmes can be directed at development of locally relevant, basic waste collection and sorting systems then hazardous components of the waste stream such as mercury bearing waste can be separated for treatment and recovery of mercury using technology that is readily available in developed countries and which is a fraction of the expense of establishing landfills or incinerators.
These technologies include fluorescent lamp and other mercury bearing lighting recycling, continuous distillation processes for mercury contaminated soils, mining wastes and sludges from the petrochemical and gas industries. Distillation technologies are already employed in the oil and gas sector to remove mercury from produced gas to protect gas storage systems from corrosion.

Technology transfer and capacity building that addresses the whole of the waste system in developing countries is important. The waste sector should be seen through the lens of the emerging circular economy and sustainable development goals. Instead of perceiving waste as a problem to be buried or burned it should be an opportunity to build small sustainable businesses in impoverished communities, generate local scale clean energy and employment while protecting human health and the environment.

Attention should be given to non-combustion waste management alternatives in terms of technology transfer. Waste management policy in the EU is moving away from incineration of waste and subsidies are being withdrawn in recognition that incineration is not compatible with the circular economy. Developing countries should be given the opportunity to ‘leap-frog’ polluting incineration and burial technology in the waste management sector and adopt cutting edge techniques to manage their waste through the capacity building and technology transfer processes.

A key aspect of this sustainable waste management process is source separation of organics. Organic waste is the main contributor to anaerobic conditions in landfill, leaching metals under reductive conditions into the groundwater and releasing large volumes of methane - a potent GHG. Organic waste also poses problems for incineration due to its high moisture content requiring supplemental fuel application (usually gas or oil) to reduce moisture levels. This leads to further emissions. Far more productive is the separation of organic materials from the waste stream and their use in anaerobic digestion (AD) and/or composting. The development of biogas from AD can be utilised for energy generation without the release of UPOPs and ash, a major problem suffered by waste incineration. The AD systems can be scaled up from basic household models through to school, commercial and fully industrialised models. Biogas from AD can also be used for cooking displacing more polluting cooking fuels. The final solid residue, digestate, is a valuable fertiliser for agricultural communities. There are clearly opportunities for technology transfer and capacity building programmes to address the waste systems of developing countries more holistically and the instruments of the Minamata Convention dedicated to these purposes (such as the Specific Trust Fund) could be applied. There is a clearly a need to use such mechanisms to address the uptake of AD in developing countries. Sub-Saharan Africa being a case in point where biogas could have enormous positive impacts but lacks seed funding and institutional understanding (Mwirigi et al 2014).

Once organics are removed from the waste stream other benefits are apparent. Organic wastes contaminate recycling in mixed waste systems. Their removal at the source separation stage increases the value of the recyclable component of the MSW stream which remains clean. Mixed waste and recyclables contaminated with organic materials has low value and is at higher risk of open burning. One sector of the recyclable components includes mercury impacts wastes.

A key source of mercury waste in municipal waste generation is compact fluorescent lighting (CFL) and associated fluorescent tubes. Once added to burning waste and broken the mercury phosphor powder escapes the glass lamp and can cause significant contamination and human exposure in vapor phase and as particulate.

Small-scale recycling facilities can be developed for CFL and tubes which contain the mercury-based powder, while separating glass, metal and plastic components for recycling. Many spent lamp recycling
collection systems are being established at point of sale to allow customers to return burned out lamps intact. These collected lamps can then be consolidated and sent to regional recycling facilities.

Figure 2. Fluorescent lamp recycling unit

These semi-automated units can recycle between 1 and 10 million lamps per year, are fitted with carbon filters and claim to limit mercury emissions to 0.001-0.002 mg/m3. The outputs are separated mercury bearing phosphor power, glass cullet, and metal or plastic end caps.

Figure 3. CFL recycling unit fitted in Surabaya Indonesia 2013 and glass cullet from the process.

Locations that lack waste collection infrastructure may benefit from point of sale collection systems where clusters of recycling collection can take place for other hazardous and problematic wastes such as batteries and plastic. This helps to streamline the collection systems for the end recycling operation and is more convenient for the consumer resulting in higher collection rates.
Small scale recycling systems are only as effective as the collection system established for them as they may require significant volumes to remain profitable. National governments can consider extended producer responsibility schemes to help fund the establishment of these recycling operations. Poor disposal of CFL and mercury tube lamps is widespread in developing countries (Ecowaste Coalition, 2018) as represents a sector where successful recycling could be implemented economically based on commercialised technology.

Medical, dental, commercial, mining, oil/gas and industrial mercury waste.

These sources of mercury waste may also be included in open burning practices where waste collection infrastructure is absent. Technologies to extract mercury from these wastes and preventing them from entering the environment are readily available. Capacity building and technology transfer could see the implementation of regional, national and state mercury recovery centres in developing countries to manage these sources of mercury pollution.

Dental amalgam separators fitted in dental clinics where mercury amalgam is used can play a role in reducing mercury in the waste stream. However, eliminating mercury from dental therapy is a far more efficient solution which is clinically and economically feasible on a global scale. Many countries no longer use dental amalgam and the alternatives are well established and cost effective. However, for those dental practices that persist in using mercury separators are a significant barrier to environmental releases assuming that the waste they collect is managed in an environmentally sound manner. Mercury waste from dental amalgam separators can be processed for mercury recovery in the same way as industrial mercury waste through distillation and recovery methods.

Figure 4. Collection points for fluorescent lamps using mercury can also be combined with collection points for other problematic wastes such as batteries and plastics.
Continuous distillation processes from recovering mercury from commercial, mining, oil/gas and industrial mercury waste are well established. However, under the article 11 of the Minamata Convention recovered mercury can still be marketed as a commodity for uses allowed under the convention. For uses where the mass balance of mercury inputs and waste can be potentially be contained by recovery technologies (e.g. CFL recycling) this may not present a large problem. However, if mercury recovery technology becomes widespread in developing countries the supply of this form of mercury could dramatically increase global supply. This is especially true of the mining and gas sectors where large volumes of mercury can be recovered from production gas and tailings.

Careful thought need to be given to control mechanisms to restrict the supply of recovered mercury to the global market to prevent a proliferation of mercury supply. At the same time any restriction of sales of mercury by those operators of recovery systems may undermine the viability of their operation. It is clear
that if mercury produced through recovery operations is to be ‘retired’ from the commodity market then consideration needs to be given to purchasing mercury for retirement from recovery operations. A key consideration will be who should pay for mercury to be retired? For the mining, petroleum and gas sector there are clearly opportunities to implement polluter pays systems. For products containing mercury, the costs of retirement could be directed to manufacturers who choose to use mercury in production and processes. In any event if the twin policy aspirations or mercury recovery and permanent mercury retirement are to be achieved, then this issue will need to be resolved.

References

5. Information submitted by the Zero Mercury Working Group (ZMWG)

ZMWG contribution in relation to Article 14 of the Minamata Convention, on capacity building, technical assistance and technology transfer

June 2018

In response to the request from the Committee of the Whole regarding the provisions under Article 14, addressing the matters of capacity building, technical assistance and technology transfer, the Zero Mercury Working Group is pleased to provide the following contributions based on some of its most recent projects:

1. Contributing to the preparation/implementation of the Minamata Convention, with a focus on developing strategies to implement product phase-out provisions and national action plans for artisanal and small scale gold mining, in four African countries”, July 2014-December 2017.

With funding provided by the European Commission (EC) through the Food and Agriculture Organization (FAO) of the United Nations, this project reached a successful conclusion in December 2017, with encouraging, concrete and continuing results.

The project was managed by the European Environmental Bureau, in collaboration with the Zero Mercury Working Group (ZMWG), (hereafter referred to as EEB/ZMWG). Project partners were the Mercury Policy Project and Natural Resources Defense Council as resource organizations, groundwork South Africa as regional advisor, and SRADev-Nigeria, PANEM-Mauritius, Agenda-Tanzania and Friends of the Nation-Ghana as local partners.

The project focused on reducing mercury use in artisanal and small scale gold mining (ASGM) in Ghana and Tanzania through assisting in the development of National Action Plans (NAPs), and on mercury-added product phase-out in Mauritius and Nigeria. ASGM and products were chosen as thematic areas for the project because of the prominence of these mercury sources in the African Region. Globally ASGM accounts for 35% of anthropogenic airborne emissions of mercury, and mercury-added products represent the 3rd largest demand/consumption sector after ASGM and Vinyl Chloride Monomer production1.

The project aimed to provide country stakeholders with a better understanding and direction on their overall Convention ratification and obligations via-a-vis the two project thematic areas. Overall, the project has been well-received by governments and has contributed to informing and solidifying relationships among the many stakeholders who are most likely to contribute to the successful implementation of the relevant Convention provisions. The project was welcomed as an integral part of wider national preparations for ratification and early implementation of the Convention. In particular, as a result of our project, important project activities continue and our local NGO partners are integral members of the project advisory committees (PACs), the national Steering Committees of the MIA projects in their respective countries, and are also part of the NAP development teams in Ghana and Tanzania.

On developing national strategies for phasing out mercury added products, the project:

1 UNEP, Trade Report, p.10
• Engaged with the Ministry of the Environment, Mercury Focal Points and relevant stakeholders; Project Advisory Committees (PACs) involving relevant ministries/organisations, were constituted to inform and advise the project; a larger group of product related stakeholders were identified; and inception and final workshops were organised in both pilot countries.

• Assisted governments with drafting National roadmaps towards phasing out mercury added products: The project developed a ZMWG checklist and guide, including steps governments can follow to create a phase-out roadmap; the two pilot countries, Nigeria and Mauritius used the guide to draft their national roadmaps; the guide and checklist were presented at our regional workshop on products; and 29 African governments and Jamaica, plus over ten other Caribbean islands, have used the checklist and guide to develop their first draft roadmaps to phase out mercury added products.

• Further developed and implemented several of the steps identified in the checklist in the two pilot countries; specifically, the project produced:
 a. A study looking at the transition of the national market towards Convention compliant products,
 b. A legal gap analysis vis-à-vis the Article 4 requirements: In collaboration with the government of Mauritius,
 c. Draft laws to meet Art. 4 requirements

A commitment was expressed by both countries to sustain efforts towards phasing out mercury added products through continuation of Product Advisory Committees and their work plans as well as furthering support for draft legislation to move forward to phase out products by 2020.

On the development of the ASGM National Action Plans (NAPs), the project:

• Conducted initial stakeholder outreach and consultation through two-day workshops to better inform stakeholders about the Minamata Convention and its requirements.

• Conducted research and created background documents profiling the status of the ASGM sector in Tanzania and Ghana.

• Conducted intensive consultations with mining communities where miners were informed about the Convention and its requirements, while simultaneously providing a platform where miners could provide their valuable input to structure the NAP.

• Created a step-by-step guide for conducting miner consultations that can be used for further engagement in the two pilot countries or by any other country developing a NAP.

• Developed recommendations for the NAP, based on the research and consultations, including: measures on formalisation; potential measures to discourage the most harmful ASGM practices and reduce mercury consumption and releases; and education and outreach to the mining communities.

• Provided training for NGO partners on Baseline Mercury Inventories from international mining experts, contributing to the local NGOs capacity building and ensuring their future contributions to the development of the NAPs.

• Built capacity of national small-scale mining associations through a series of workshops.

The lessons learned, experiences, deliverables and tools developed by the project were presented at two regional conferences held from the 22nd to 28th May, in Nairobi, Kenya, in collaboration with UN Environment. These conferences focused on phasing out mercury-added products and on reducing mercury use in ASGM. In total, over 70 representatives from 29 African governments and Jamaica, UN agencies, NGOs, academics, and private sector took part in the conferences.
Project partners participated actively at regional meetings, the sixth and seventh Intergovernmental Negotiating Committee meetings and in the First Conference of the Parties (COP1) for the Minamata Convention. They provided input to negotiations, interacted with stakeholders and governments, and presented the project results on different occasions. ZMWG members also attended and gave presentations during a series of eleven UNEP workshops around the world, to support ratification and early implementation of the Convention.

Overall, the project has also contributed to raising awareness about Convention obligations among various stakeholders, government agencies and officials, NGOs, traders, miners and other relevant parties. Three (Ghana, Mauritius, Nigeria) out of the four project countries have now ratified the Treaty.

2. “Contributing towards early ratification and implementation of the Minamata Convention on Mercury and towards phasing out mercury added products.”

In 2016 three product phase out projects took place in Kenya (CEJAD), Ivory Coast (CASE) and South Africa (groundWork). In 2017, five additional projects started in Kenya (CEJAD), and Ivory Coast (CASE) as well as in Bangladesh (ESDO), the Philippines (BanToxics!) and India (Toxics Link), under the title of: “Contributing towards early ratification and implementation of the Minamata Convention on Mercury and towards phasing out mercury added products.” Building on the outcomes of the above mentioned project, these projects include fully or partly the following activities:

- Development and eventually assisting with the implementation of the checklist/roadmap to phase-out mercury added products with relevant government ministries.
- The development of study of availability of alternatives to mercury-added product of the country.
- Development/contribution on the legal gap analysis focusing on Article 4 provisions of the Treaty.
- Assisting hospitals to go mercury free with focus on phase out of thermometers and sphygmomanometers, in collaboration with the Ministry of Health.
- Sensitization of border inspectors from relevant government agencies and media on Minamata Convention/phase out provisions and illegal mercury containing products.
- Contribute to the global skin lightening product campaign
- Contribute to the MIA work

In 2016, a project took place in Mauritius (PANEM). The project focused among others, on awareness raising, testing and phasing out mercury in dentistry and health care while engaging in their MIA, in support of quick Treaty Ratification. The EEB/ZMWG Lumex testing instrument was used to measure mercury levels in indoor air in a public hospital, 8 private clinics, 5 schools/colleges, a national laboratory, 3 jewellery shops and outside in 2 landfills and a CFL

2 The project in South Africa was funded by German Ministry of Environment. The ones in Kenya and Ivory coast were funded by the Swedish International Development Agency (SIDA), via the Swedish Society for Nature Conservation (SSNC), through the European Environmental Bureau.

3 The projects are funded by the Swedish International Development Agency (SIDA), via the Swedish Society for Nature Conservation (SSNC), through the European Environmental Bureau.

4 The project was funded by the Swedish International Development Agency (SIDA), via the Swedish Society for Nature Conservation (SSNC), through the European Environmental Bureau.
recycling company. Eighteen awareness raising meetings/activities were held, with positive feedback from the participants. PANEM has also been an active participant of the National Mercury focus group in Mauritius, and has followed closely the multiple government processes related to the Convention, from the Minamata Initial Assessment to supporting the ratification process.

Over the last two years⁵, the EEB/ZMWG has place a considerable amount of effort into developing the capacity of its NGO partners, including but not limited to those mentioned above. Through the projects described, these NGOs have become key stakeholders and resources in their respective countries. In order to expand these efforts further, additional funding for NGOs that would allow continued support in the form of technical assistance, capacity building and technology transfer, is essential to the effective implementation of the Minamata Convention.

⁵ EEB/ZMWG has been funding around 5 projects per year since 2005, in around 30 countries. [http://www.zeromercury.org/index.php?option=com_content&view=article&id=52&Itemid=41]